
Fixed-Point Designer™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Fixed-Point Designer™ Release Notes
© COPYRIGHT 2013–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2019a

Emulate hardware handling of denormal numbers 1-2

New data type propagation rules for Sum, Gain, and Product
blocks . 1-2

Automatically prepare Simulink systems for conversion to fixed
point . 1-3

Complex support for half-precision . 1-3

Specify multiple simulation scenarios for data type
optimization . 1-3

Lookup table optimization options available in the app 1-4

Specify new constraints for lookup table optimization 1-4

Derived range analysis support for fixed-point optimization
. 1-4

Specify tolerances of signals in system for conversion 1-5

New functions supported for half-precision inputs 1-5

iii

Contents

R2018b

Lookup Table Optimization: Automatically replace subsystems
with a direct lookup table and other enhancements 2-2

Approximate a Subsystem with a lookup table 2-2
Generate a direct lookup table to approximate a function or

subsystem . 2-2
Generate a lookup table approximation from a function handle

using the Lookup Table Optimizer app 2-2
Generate lookup tables with flat and nearest interpolation

methods . 2-2
Automatically replace blocks with an optimized lookup table

block . 2-2

Data Type Optimization: Using parallel simulations,
automatically select and apply heterogeneous data types for
your system under design . 2-3

Parallel support for data type optimization 2-3
New method for specifying required behavior of optimized

design . 2-3

Single Precision Converter: Convert MATLAB Function blocks
to single precision . 2-3

cordicacos and cordicasin Functions: Compute fixed-point
CORDIC inverse sine and cosine . 2-4

Simulation Analysis and Performance: Instrumentation
support for Fast Restart mode . 2-4

Explore and debug Fixed-Point Tool results with sorting and
filtering functionalities . 2-4

Design and simulate half-precision systems in MATLAB 2-5

iv Contents

R2018a

Lookup table optimization: Approximate functions using a
lookup table and optimize existing lookup tables to
minimize RAM usage . 3-2

Data type optimization: Automatically select and apply
heterogeneous data types for your system under design,
optimizing bit width. 3-4

Redesigned code generation reports: View fiaccel and
instrumentation results with improved user interface 3-4

R2017b

Simplified Fixed-Point Tool: Convert Simulink systems to fixed
point using the updated tool that provides guidance at each
step of the workflow . 4-2

Data Type Visualizer: Understand and analyze data type
choices by viewing histograms of the dynamic range of
signals in your model . 4-3

Data Type Exploration: Iteratively explore multiple floating
point to fixed-point conversions to determine the optimal
choice . 4-4

Function Input and Output Logging: Selectively log and plot
function inputs and outputs at any level of your design in
the Fixed-Point Converter app . 4-4

Simulink Diagnostic Management: Suppress immaterial
diagnostic warnings and errors from specific blocks to
efficiently discover modeling errors 4-6

v

Expanded Overflow Diagnostics: Comprehensive run-time
diagnostics for wrapping and saturating overflows from
Stateflow and MATLAB Function blocks 4-7

Autoscaling Lookup Table Objects: Propose and apply fixed-
point data types for Simulink Lookup Table and Breakpoint
objects . 4-7

Check for expensive fixed-point data types in generated code
. 4-7

Propose and apply data types for model reference blocks
programmatically . 4-8

cordictanh function for computing fixed-point CORDIC-based
hyperbolic tangent . 4-8

Functionality being removed or changed 4-8

R2017a

Simulink Diagnostic Management: Control which simulation
and fixed-point diagnostic warnings you receive from
specific blocks, including model reference 5-2

Select blocks with certain diagnostic suppressions by default
. 5-2

Diagnostic suppressor functions support MSLDiagnostic as
input argument . 5-2

Improved workflow for suppressing diagnostics from referenced
models . 5-3

Derived range analysis support for System objects in Simulink
. 5-3

Autoscaling support for Simulink.AliasType objects 5-3

Improved data type proposals for shared data type groups
across model reference . 5-3

vi Contents

More fixed-size variable information in Convert to Fixed-Point
step of the Fixed-Point Converter app 5-4

fimath property changes . 5-5

R2016b

Single-Precision Conversion: Automatically convert double-
precision systems to use single-precision data types in
Simulink . 6-2

Float to Fixed Conversion of MATLAB Function Blocks:
Automatically generate fixed-point versions of floating-point
MATLAB Function blocks . 6-2

Histogram Instrumentation in Simulink: Generate log2
histograms of Simulink signals and blocks from simulation
data . 6-5

Autoscaling numerictype Objects: Propose and apply fixed-
point data types for Simulink numeric type objects 6-7

Range analysis support for FIR filters, Dead Zone, and Rate
Limiter blocks . 6-7

Simulink Diagnostic Suppressor . 6-7

Reduced number of multiplication helper functions 6-8

Improved accuracy of fixed-point sin, cos, and mod functions
. 6-8

Improved workflow for collecting and analyzing ranges in the
Fixed-Point Converter app . 6-8

vii

R2016a

Autoscaling Parameter Objects: Automatically propose and
apply data types for parameter objects 7-2

View and edit fi objects in Model Explorer 7-2

Simulate system level designs that integrate referenced
models targeting an assembly of heterogeneous embedded
devices . 7-3

Enhancements to Fixed-Point Converter app 7-4
Support for arrays of structures . 7-4
Structures in generated fixed-point code 7-4
Revert changes to input type definitions 7-4
View complete error message in error table 7-4
Additional keyboard shortcuts in the code generation report

. 7-4
Changes to Fixed-Point Conversion Code Coverage 7-5

R2015aSP1

Bug Fixes

R2015b

Simulink Fixed-Point Tool workflow simplification: Propose
signedness and data types for inherited and floating-point
types . 9-2

System under design (SUD) specification 9-2
Signedness proposals . 9-2
Proposals for objects using inherited and floating-point types

. 9-3

viii Contents

Two-way traceability between model and Fixed-Point Tool 9-4
New configurations for model settings 9-4

Double-precision to single-precision conversion: Convert
double-precision MATLAB code to single-precision MATLAB
code using the command line . 9-4

MATLAB Fixed-Point Converter app streamlined workflow:
Restore project state and minimize regeneration of MEX
files . 9-5

Saving and restoring fixed-point conversion workflow state in
the app . 9-5

Minimized regeneration of MEX files 9-6
Specification of additional fimath properties in app editor 9-6
Improved management of comparison plots 9-6
Variable specializations . 9-8
Improvements to Readability of Generated Code 9-8
Tab completion for specifying files . 9-10
Improvements for manual type definition 9-10
Compatibility between the app colors and MATLAB preferences

. 9-11

Range analysis for Delay blocks: Improve accuracy and speed
of range analysis on models using Delay blocks 9-11

Control of signed shifts in fixed-point scaling operations:
Control the use of signed shifts in generated code 9-11

MATLAB . 9-11
Simulink . 9-12

Access full-precision value of fi object in decimal and string
format . 9-12

Detection of multiword operations . 9-13
MATLAB . 9-13
Simulink . 9-13

Enhanced Model Advisor check for implementing strict single-
precision designs . 9-13

System object instrumentation in Fixed-Point Tool 9-14

ix

R2015a

Derived Ranges for MATLAB Function Blocks in Simulink
. 10-2

Fixed-Point Converter app enhancements, including detection
of dead and constant folded code, support for projects with
multiple entry point functions and support for global
variables . 10-2

Support for projects with multiple entry-point functions 10-2
Support for global variables . 10-2
Code coverage based translation . 10-2
Conversion from project to MATLAB scripts for command-line
fixed-point conversion . 10-3

Generated fixed-point code enhancements 10-3
Integration with MATLAB Coder app interface 10-3

Automated conversion of additional DSP System objects using
the Fixed-Point Converter app . 10-3

Fixed-Point SimState logging and root logging improvements
. 10-4

Flexible structure assignment of buses 10-4

eye(m,'like',a) syntax supported for fixed-point inputs 10-4

New interpolation method for generating lookup table
MATLAB function replacements . 10-4

Fixed-point scaling information in Code Interface Report . . 10-5

R2014b

Fixed-Point Converter app for automated conversion of
floating-point MATLAB code . 11-2

x Contents

Commands for scripting fixed-point conversion and accessing
the collected data in Simulink . 11-2

Automated fixed-point conversion for commonly used DSP
System objects, including Biquad Filter, FIR Filter, and FIR
Rate Converter . 11-3

Simulation range collection and data type proposals for
MATLAB Function blocks in Simulink 11-3

Overflow diagnostics to distinguish between wrap and
saturation in Simulink . 11-4

Highlighting of potential data type issues in generated HTML
report . 11-4

Code generation of for loops using fixed-point loop indices
. 11-4

Cast net slope computations using rational numbers 11-4

Lock Column View option in the Fixed-Point Tool 11-5

Fixed-Point Advisor enhancements . 11-5

hdlram renamed hdl.RAM . 11-5

Changes to data type strings . 11-5
Signal data type display . 11-5
tostring function now uses 0 and 1 to represent signedness

. 11-6

New featured examples . 11-6

R2014a

Data type override and automatic data typing for bus objects
. 12-2

Data type override for bus objects . 12-2

xi

Autoscaling for bus objects . 12-2

Derived ranges for complex signals in Simulink 12-2

cordicsqrt function for fixed-point CORDIC-based square root
functionality . 12-2

Overflow detection with scaled double data types in MATLAB
Coder projects . 12-3

Fixed-point ARM Cortex-M code replacement support for DSP
System Toolbox FIR filters . 12-3

Fixed-Point Advisor support for referenced configuration sets
. 12-3

Enhancements to automated conversion of MATLAB code . . 12-3
Support for MATLAB classes . 12-3
Generated fixed-point code enhancements 12-4
Fixed-point report . 12-4

Automatic C compiler setup . 12-4

More flexible control of dsp.LMSFilter System object fixed-
point settings . 12-4

Derived ranges for For Each and For Each Subsystem blocks
. 12-5

R2013b

C99 long long integer data type for embedded code generation
. 13-2

Model Advisor fixed-point checks with additional coverage and
optimization awareness . 13-2

xii Contents

fi object as an index in colon expressions and an argument to
numel and bit index functions . 13-3
fi object as an index in colon expressions 13-3
fi objects as bit index input argument 13-3
fi objects as shift-value input argument 13-3
numel function support for fi inputs 13-3

Improved efficiency of data type internal rules for Lookup
Table blocks . 13-3

Derived ranges for complex variables in MATLAB Coder
projects . 13-4

Simplified modeling of single-precision designs 13-4

Range analysis support on Mac platforms 13-5

Changes to showInstrumentationResults function options
. 13-5

New option to suppress display of MATLAB code 13-5
Removal of -browser option . 13-6

Changes to Continuous state-space block family range analysis
support . 13-6

Enhanced fiaccel support for int64 and uint64 functions . . . 13-6

Support for LCC compiler on Microsoft Windows (64-bit)
machines . 13-6

Warning for use of inexact fi and fimath property names . . . 13-6

Conversion of numeric variables into Simulink.Parameter
objects . 13-7

Fixed-point conversion test file coverage results 13-7

Fixed-point conversion workflow supports designs that use
enumerated types . 13-8

Fixed-point conversion of variable-size data using simulation
ranges . 13-8

xiii

Error checking improvements for bitconcat, bitandreduce,
bitorreduce, bitxorreduce, bitsliceget functions 13-8

Legacy data type specification functions return numeric
objects . 13-8

numberofelements function being removed in a future release
. 13-11

R2013a

Product restructuring . 14-2

Histogram logging in instrumented MATLAB Code Generation
report . 14-2

fi object in indexing and switch-case expressions 14-2

zeros, ones, and cast code reuse for floating-point and fixed-
point types . 14-2

Code generation for x.^n when n is a variable and x is a fi
object . 14-4

Fixed-Point Advisor support for model reference 14-4

Automated conversion of floating-point to fixed-point types in
MATLAB Coder projects . 14-4

Improved autoscaling for models with virtual bus signals . . 14-5

Data Type Override for MATLAB Function block using built-in
doubles and singles . 14-5

Instrumentation for arrays of structs 14-5

File I/O function support . 14-6

Support for nonpersistent handle objects 14-6

xiv Contents

Load from MAT-files for code acceleration 14-6

New toolbox functions supported for code acceleration and
generation . 14-6

Function to be removed in a future release 14-8

Function being removed . 14-8

xv

R2019a

Version: 6.3

New Features

Bug Fixes

1

Emulate hardware handling of denormal numbers
If your target hardware uses flush-to-zero behavior for denormal numbers, you can now
emulate this behavior during accelerated simulation of your system.

To enable flush-to-zero behavior, in the Configuration Parameters, on the Math and Data
Types pane, set the Simulation behavior for denormal numbers parameter to Flush
to zero (FTZ). The default behavior for simulation of denormal numbers is Gradual
underflow.

You can simulate a top-level model using gradual underflow with any simulation mode.
Models referenced by the top-level model can simulate the flush-to-zero behavior only if
the instance of the referenced model uses an accelerated simulation mode and has the
Simulation behavior for denormal numbers parameter set to Flush to zero
(FTZ).

New data type propagation rules for Sum, Gain, and Product
blocks
There are now new output data type choices for the Sum, Gain, and Product blocks. These
new data type propagation rules give you more control over the range and scaling of the
output.

• Inherit: Keep MSB – This rule selects an output data type that maintains the full
range of the operation and then reduces the precision of the output value to a size
appropriate for the target hardware. This rule will never produce an overflow.

This rule is available for the Sum, Product, and Gain blocks.
• Inherit: Keep LSB – This rule selects an output data type that maintains the

precision of the operation but reduces the range if the full type does not fit on the
target hardware. This rule can produce overflows.

This rule is available for the Sum block.
• Inherit: Match Scaling – This rule attempts to maintain the scaling of the output

data type. This rule can produce overflows.

This rule is available for the Product and Gain blocks.

R2019a

1-2

Automatically prepare Simulink systems for conversion to
fixed point
Using the Fixed-Point Tool, you can prepare a model for conversion from a floating-point
model or subsystem to an equivalent fixed-point representation. During the preparation
stage of the conversion, the Fixed-Point Tool checks the system under design for
compatibility with the conversion process and reports any issues found in the model.
When possible, the Fixed-Point Tool automatically changes settings that are not
compatible. In cases where the tool is not able to automatically change the settings, the
tool notifies you of the changes you must make manually to help the conversion process
be successful.

Complex support for half-precision
You can now represent complex values using a half-precision floating-point data type in
MATLAB®. To cast a variable to half precision, use the half function.

a_double = 3 + 4i;
a_half = half(a_double)

a_half =

 half

 3.0000 + 4.0000i

Most functions which support half-precision inputs also support complex half-precision
inputs.

Specify multiple simulation scenarios for data type
optimization
You can now specify multiple simulation scenarios to use for collecting ranges and
verifying your design during fixed-point optimization. Specifying multiple simulation
scenarios enables you to optimize the data types of your system using a range of input
stimuli to ensure that the system is exercised over its entire operating range. The
optimization uses the defined simulation scenarios to verify the solutions based on the
tolerances specified in the options object.

1-3

Lookup table optimization options available in the app
You can now specify the following options from the Lookup Table Optimizer app.

• Interpolation – Method to use when an input falls between breakpoint values

Setting the Interpolation to None generates a Direct Lookup Table (n-D) block.
• Breakpoint specification – Spacing of breakpoint data
• Saturate to output type – Whether to saturate the output of the function being

approximated to the range of the output type

The app is also now able to approximate any MATLAB function handle, Math Function
block, or stateless subsystem. It can also optimize the breakpoints and spacing of any
existing Lookup Table block.

Specify new constraints for lookup table optimization
Using the Lookup Table Optimizer, you can now specify additional options to control the
optimization behavior.

• Max Memory Usage – Specify the maximum amount of memory, in bytes, that the
lookup table approximation can use.

• Max Time – Specify the maximum amount of time, in seconds, to allow the
approximation to run. The approximation runs until it reaches the time specified, finds
an ideal solution, or reaches another stopping criteria.

You can specify these options in the Advanced Options dialog on the Create page of the
Lookup Table Optimizer app or using the FunctionApproximation.Options object.

Derived range analysis support for fixed-point optimization
When using fxpopt to optimize the fixed-point data types of a Simulink® system, you can
now specify whether the optimization should consider ranges derived from design ranges
specified in your model when assessing a solution. To enable derived range analysis while
optimizing data types, set the UseDerivedRangeAnalysis property of the
fxpOptimizationOptions object to true.

opt = fxpOptimizationOptions;
opt.AdvancedOptions.UseDerivedRangeAnalysis = true;

R2019a

1-4

Specify tolerances of signals in system for conversion
After performing a range collection run, you can specify absolute, relative, and time
tolerances for signals in your model that have signal logging enabled. After you simulate
an embedded run, the Run Browser displays whether the embedded run meets the
specified signal tolerances compared to the range collection run. You can view the
comparison plots in the Simulation Data Inspector.

New functions supported for half-precision inputs
The following functions now support half-precision inputs.

• fma – new in R2019a
• hypot
• min
• max

1-5

• mean
• dot

In addition, the relational operators (gt, lt, eq, ge, le, ne) are now able to compare half
and integer types.

For more information, see half.

R2019a

1-6

R2018b

Version: 6.2

New Features

Bug Fixes

2

Lookup Table Optimization: Automatically replace subsystems
with a direct lookup table and other enhancements
Approximate a Subsystem with a lookup table

You can now replace an entire subsystem with a lookup table. To approximate a
subsystem, specify the subsystem you want to approximate in the
FunctionApproximation.Problem object. This functionality is available only through
the command line.

Generate a direct lookup table to approximate a function or subsystem

You can now approximate a function, subsystem, or math function with a Direct Lookup
Table (n-D) block. Direct Lookup Table (n-D) blocks do not use breakpoint data, and
instead index directly into the table data. To generate a Direct Look Table (n-D) block, in a
FunctionApproximation.Options object, set the Interpolation property to None.
This functionality is available only through the command line.

Generate a lookup table approximation from a function handle using the Lookup
Table Optimizer app

Using the Lookup Table Optimizer app, you can now generate a lookup table that
approximates a function handle. In previous releases, lookup table approximation of
function handles was available only through the command line.

Generate lookup tables with flat and nearest interpolation methods

When an input falls between breakpoint values, the lookup table interpolates the output
value using neighboring breakpoints. Using the FunctionApproximation.Options
object, you can now specify Flat and Nearest interpolation methods. For more
information on these interpolation methods, see FunctionApproximation.Options.
This functionality is available only through the command line.

Automatically replace blocks with an optimized lookup table block

Using the Lookup Table Optimizer app, you can now automatically replace a block with an
optimized lookup table. In previous releases you had to manually insert the optimized
lookup table approximation into your model.

R2018b

2-2

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.problem-class.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/directlookuptablend.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/functionapproximation.options-class.html

Data Type Optimization: Using parallel simulations,
automatically select and apply heterogeneous data types for
your system under design
Parallel support for data type optimization

The new UseParallel property of the fxpOptimizationOptions object allows you to
specify whether to run iterations of the optimization in parallel. The default value of this
property is false. Running the iterations in parallel requires a Parallel Computing
Toolbox™ license. If you do not have a Parallel Computing Toolbox license, or if you
specify false, the iterations run in serial.

New method for specifying required behavior of optimized design

Using the addTolerance method, you can now specify a time tolerance for your
optimized design.

When the tolerance_type input argument is set to 'TimeTol', then
tolerance_value defines a time interval, in seconds, in which the maximum and
minimum values define the upper and lower values to compare against. For more
information, see How the Simulation Data Inspector Compares Data (Simulink).

Single Precision Converter: Convert MATLAB Function blocks
to single precision
Using the Single Precision Converter, you can automatically convert Simulink models and
subsystems from double precision to single precision. Beginning in R2018b, the Single
Precision Converter also converts MATLAB Function blocks from double precision to
single precision.

To use the Single Precision Converter, from the Simulink Analysis menu, select Data
Type Design > Single Precision Converter. Under System under design, select the
system to convert to single-precision, then click Convert to Single.

For more information, see Getting Started with Single Precision Converter.

2-3

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/fxpoptimizationoptions-class.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/fxpoptimizationoptions.addtolerance.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/how-the-simulation-data-inspector-tool-compares-time-series-data.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/getting-started-with-the-double-to-single-converter.html

cordicacos and cordicasin Functions: Compute fixed-point
CORDIC inverse sine and cosine
The cordicacos and cordicasin functions provide a CORDIC-based approximation of
the inverse cosine and inverse sine for use in fixed-point applications. For syntax and
examples, see cordicacos and cordicasin.

Simulation Analysis and Performance: Instrumentation
support for Fast Restart mode
Using the Fixed-Point Tool, you can now view instrumentation data for your model when it
simulates in Fast Restart mode. In previous releases, only Normal mode simulation was
supported for instrumentation in the Fixed-Point Tool. For more information about Fast
restart mode, see Get Started with Fast Restart (Simulink)

Explore and debug Fixed-Point Tool results with sorting and
filtering functionalities
Using the new Explore tab in the Fixed-Point Tool, you can now sort and filter results.
The Explore tab enables you to sort results based on the following criteria:

• Block execution order
• Magnitude of logged simulation values
• Dynamic range of logged simulation values
• Data type properties, such as word length, integer length, or fraction length

You can filter results based on the following criteria:

• Data type
• Numerical issues, such as overflows or underflows
• Whether the logged simulation values are always whole numbers
• Signedness

To use the new sorting and filtering options, simulate a system using the Fixed-Point Tool
with fixed-point instrumentation or signal logging turned on. The Explore tab is visible
when the Fixed-Point Tool contains at least one run of instrumentation data.

R2018b

2-4

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/cordicacos.html
https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/cordicasin.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/fast-restart-workflow.html

Design and simulate half-precision systems in MATLAB
You can now specify half-precision floating-point data types in MATLAB. Half-precision
data types occupy only 16 bits of memory, but their floating-point representation enables
them to handle wider dynamic ranges than integer or fixed-point data types of the same
size.

To cast a variable to half precision, use the half function.

a = half(pi)

 half

 3.1406

2-5

https://www.mathworks.com/help/releases/R2018b/fixedpoint/ref/half.html

R2018a

Version: 6.1

New Features

Bug Fixes

Compatibility Considerations

3

Lookup table optimization: Approximate functions using a
lookup table and optimize existing lookup tables to minimize
RAM usage
Use the Lookup Table Optimizer to obtain an optimized (memory-efficient) lookup table
that approximates an existing lookup table or math function. By replacing a floating-point
math function block with a fixed-point lookup table, or optimizing the spacing and data
types of an existing lookup table, you can improve the memory-efficiency of your
algorithm.

To open the Lookup Table Optimizer, in your Simulink model, select Analysis > Data
Type Design > Lookup Table Optimizer.

You can also use the command line interface to generate a memory-efficient lookup table.
The command-line workflow also enables you to generate a lookup table from a MATLAB
math function or function handle.

p = FunctionApproximation.Problem('sin')

 p =

 FunctionApproximation.Problem with properties

 FunctionToApproximate: @(x)sin(x)
 NumberOfInputs: 1
 InputTypes: "numerictype(0,16,13)"
 InputLowerBounds: 0
 InputUpperBounds: 6.2832
 OutputType: "numerictype(1,16,14)"
 Options: [1×1 FunctionApproximation.Options]

Specify additional options and constraints, such as the breakpoint specification.

p.Options.BreakpointSpecification = 'EvenSpacing'

Solve the optimization and compare the output of the original function with the output of
the newly generated lookup table.

s = solve(p);
data = compare(s)

R2018a

3-2

3-3

Data type optimization: Automatically select and apply
heterogeneous data types for your system under design,
optimizing bit width.
Use the fxpopt function to optimize the data types used in your system under design.
You can specify constraints and tolerances to meet your design goals using the
fxpOptimizationOptions object. The software analyzes ranges of objects in your
system and your specified constraints, such as tolerances, to apply heterogeneous data
types to your system while minimizing total bit width.

Redesigned code generation reports: View fiaccel and
instrumentation results with improved user interface
In R2018a, the code generation reports for fiaccel, buildInstrumentedMex, and
showInstrumentationResults have a new user interface.

Some benefits of the new use interfaces are:

• Improved navigation. For example, if you double-click a variable in the MATLAB code,
you see the variable in the Variables tab.

• More information in the Summary tab of the fiaccel and buildInstrumentedMex
reports. The Summary tab now includes code generation settings and your entry-
point functions with the input argument data types that you specified.

• Easier to use pop-up displays data type information in the
showInstrumentationResults report. For example, you can pin the pop-up display
to the report.

In R2018a, the reports are located in the same folders as in previous releases, but have a
different file format. In previous releases, a report was saved with an HTML format and
consisted of many files. In R2018a, a report is saved as one file with an .mldatx file
extension. You can open a file with an .mldatx extension in MATLAB.

Compatibility Considerations
If you generate a report in R2018a, you cannot open it in a previous release. In R2018a,
you can open reports that you generated in a previous release, but they look and behave
as they did in that release.

R2018a

3-4

R2017b

Version: 6.0

New Features

Bug Fixes

Compatibility Considerations

4

Simplified Fixed-Point Tool: Convert Simulink systems to fixed
point using the updated tool that provides guidance at each
step of the workflow
The redesigned Fixed-Point Tool enables you to easily convert floating-point Simulink
systems to fixed point. The new tool features a simplified, linear workflow, with better
representation of the data.

Traceability between entries in the table, columns of the new data type visualization, and
the model enable you to efficiently debug numerical issues and find the ideal fixed-point
design for your system.

Launch the Fixed-Point Tool from any model from the Analysis > Data Type Design >
Fixed-Point Tool, or by right-clicking the system you want to convert to fixed point and
selecting Fixed-Point Tool.

R2017b

4-2

For more information, see Autoscaling Using the Fixed-Point Tool.

Data Type Visualizer: Understand and analyze data type
choices by viewing histograms of the dynamic range of
signals in your model
Using the Fixed-Point Tool, you can now view a summary of histograms of the bits used by
each object in your model. Each column in the data type visualization represents a
histogram for one object in your model. Each bin in a histogram corresponds to a bit in
the binary word.

Selecting a column highlights the corresponding model object in the spreadsheet of the
Fixed-Point Tool, and populates the Result Details pane with more detailed information
about the selected result.

Use this data type visualization to see a summary of the ranges of objects in your model
and to quickly spot sources of overflows, underflows, and inefficient data types. To view
the data type visualization, simulate a system with fixed-point instrumentation or signal
logging turned on. Overflows are marked with a red triangle above the column
representing the model object. Underflows are marked with a yellow triangle. For an
example, see Debug a Fixed-Point Model.

4-3

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/working-with-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/debugging-a-fixed-point-model.html

Data Type Exploration: Iteratively explore multiple floating
point to fixed-point conversions to determine the optimal
choice
In past releases, after applying fixed-point data types using the Fixed-Point Tool, you
could no longer explore new default word length or fraction length choices. The tool
would only rescale the existing fixed-point types. In R2017b, you can now propose and
apply fixed-point data types using new proposal settings and default data types, and
compare the behavior between runs until you find the optimal choice. For an example, see
Explore Multiple Floating-Point to Fixed-Point Conversions.

Function Input and Output Logging: Selectively log and plot
function inputs and outputs at any level of your design in the
Fixed-Point Converter app
You can now elect to log and plot all function inputs and outputs during the Test phase of
fixed-point conversion using the Fixed-Point Converter app. In previous releases, only top-
level function inputs and outputs could be logged.

To log a function input or output, on the Convert to Fixed-Point page, after converting
your code, click the Test arrow and select the Log inputs and outputs for comparison
plots check box. In the Log Data column of the Variables tab, select the check mark
next to the function inputs and outputs you want to log. By default, all inputs and outputs
of the top-level function are logged. To log inputs and outputs of other functions in the
call tree, select the function in the left pane, and select the variables you want logged.

R2017b

4-4

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/_mw_fba01d2a-139f-41f8-b04c-22f97e6e8536.html

When you are done selecting the variables you want to log, click Test.

The Fixed-Point Converter runs a floating-point and fixed-point simulation, then generates
comparison plots and calculates the difference error for all variables logged.

4-5

Click the icon in the Max Diff column to open the comparison plot.

For an example, see Debug Numerical Issues in Fixed-Point Conversion Using Variable
Logging.

Simulink Diagnostic Management: Suppress immaterial
diagnostic warnings and errors from specific blocks to
efficiently discover modeling errors
You can now suppress certain diagnostics that are treated as errors for specific objects in
your model. In past releases, only warning diagnostics were supported for suppression.

R2017b

4-6

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/best-practices-for-debugging-out-of-the-box-conversion-by-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/best-practices-for-debugging-out-of-the-box-conversion-by-the-fixed-point-converter-app.html

Click the Suppress button next to the error or warning in the Diagnostic Viewer to
suppress the diagnostic from the specified source. You can restore the diagnostic from the
source by clicking the Restore button.

You can also configure suppressions from the command line. For more information, see
Simulink.suppressDiagnostic and Simulink.restoreDiagnostic.

Expanded Overflow Diagnostics: Comprehensive run-time
diagnostics for wrapping and saturating overflows from
Stateflow and MATLAB Function blocks
The Diagnostic Viewer now reports overflows due to wrap and saturation that occur
within a MATLAB Function block or in a Stateflow chart that uses MATLAB as the action
language. In cases of overflows that occur within a MATLAB Function block, the
diagnostic includes the line number at which the overflow occurred.

You can suppress and restore these diagnostics at the block level by clicking the
Suppress and Restore buttons respectively in the Diagnostic Viewer.

Autoscaling Lookup Table Objects: Propose and apply fixed-
point data types for Simulink Lookup Table and Breakpoint
objects
Using the Fixed-Point Tool, you can now propose and apply data types for Simulink
LookupTable and Breakpoint objects used in your model, including within Lookup table,
Prelookup, and Interpolation blocks. The Fixed-Point Tool detects these objects in your
model and proposes a fixed-point data type based on their respective values, ranges, and
constraints. The tool applies the proposed data type to the object by updating the object
in the workspace in which it is defined. For more information on autoscaling data objects
using the Fixed-Point Tool, see Autoscaling Data Objects Using the Fixed-Point Tool.

Check for expensive fixed-point data types in generated code
When a design contains integer or fixed-point word lengths that do not exist on your
target hardware, the generated code can contain extra saturation code, shifts, and
multiword operations. By changing the data type to one that is supported by your target
hardware, you can improve the efficiency of the generated code. The Model Advisor flags
these expensive data types in your model. For example, the Model Advisor would flag a

4-7

https://www.mathworks.com/help/releases/R2017b/simulink/slref/simulink.suppressdiagnostic.html
https://www.mathworks.com/help/releases/R2017b/simulink/slref/simulink.restorediagnostic.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/autoscale-data-objects-using-the-fixed-point-tool.html

fixed-point data type with a word length of 17 if the target hardware was 32 bits. For
more information, see Optimize Generated Code with the Model Advisor.

Propose and apply data types for model reference blocks
programmatically
A new syntax for the DataTypeWorkflow.Converter class enables you to specify a top
model when converting a referenced model to fixed point. To convert a referenced model,
ref_model, and collect ranges by simulating the referenced model from the top model,
top_model, use the following syntax:

converter = DataTypeWorkflow.Converter(ref_model,'TopModel',top_model)

For more information on converting systems to fixed point programmatically, see
Command Line Interface for the Fixed-Point Tool.

cordictanh function for computing fixed-point CORDIC-based
hyperbolic tangent
The cordictanh function provides a CORDIC-based approximation of the hyperbolic
tangent for use in fixed-point applications. For syntax and examples, see cordictanh.

Functionality being removed or changed
Functionality Result Use This Instead Compatibility

Considerations
autofixexp Still runs DataTypeWorkflow

.Converter
For more information
on how to use the
DataTypeWorkflow
.Converter to
convert a system to
fixed point, see The
Command-Line
Interface for the
Fixed-Point Tool.

R2017b

4-8

https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/convert-a-model-sing-the-command-line.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/cordictanh.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ref/datatypeworkflow.converter-class.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html
https://www.mathworks.com/help/releases/R2017b/fixedpoint/ug/the-command-line-interface-for-the-fixed-point-tool.html

R2017a

Version: 5.4

New Features

Bug Fixes

Compatibility Considerations

5

Simulink Diagnostic Management: Control which simulation
and fixed-point diagnostic warnings you receive from specific
blocks, including model reference
Select blocks with certain diagnostic suppressions by default

Beginning in R2017a, the Counter Free-Running, HDL Counter, Counter Limited, and
Extract Bits blocks no longer report wrap on overflow warnings. The blocks continue to
report errors due to wrap on overflows. You can restore the warning diagnostic by
breaking the library link and using the Simulink.restoreDiagnostic function.

Diagnostic suppressor functions support MSLDiagnostic as input argument

You can now suppress and restore certain diagnostic warnings thrown by your model
using a Simulink.MSLDiagnostic object as an input to the
Simulink.suppressDiagnostic and Simulink.restoreDiagnostic functions.

To use simulation metadata and MSLDiagnostic objects, use set_param to set
ReturnWorkspaceOutputs to on. Store the simulation output in a variable.

set_param(model_name,'ReturnWorkspaceOutputs','on');
out = sim(model_name);

Access the MSLDiagnostic object through the simulation output.

diag = out.getSimulationMetadata.ExecutionInfo.WarningDiagnostics(1).Diagnostic

diag =

 MSLDiagnostic with properties:

 identifier: 'SimulinkFixedPoint:util:fxpParameterPrecisionLoss'
 message: 'Parameter precision loss occurred for 'Value' of 'Suppressor_CLI_Demo/one'. The parameter's value cannot be represented exactly using the run-time data type. A small quantization error has occurred. To disable this warning or error, in the Configuration Parameters > Diagnostics > Data Validity pane, set the 'Detect precision loss' option in the Parameters group to 'none'.'
 paths: {'Suppressor_CLI_Demo/one'}
 cause: {}
 stack: [0×1 struct]

Use the Simulink.suppressDiagnostic function to suppress the diagnostic warning
specified by the MSLDiagnostic object, diag.

Simulink.suppressDiagnostic(diag)

You can restore the diagnostic using the Simulink.restoreDiagnostic function

R2017a

5-2

https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.restorediagnostic.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.suppressdiagnostic.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/simulink.restorediagnostic.html

Simulink.restoreDiagnostic(diag)

Improved workflow for suppressing diagnostics from referenced models

You can now suppress certain diagnostic warnings for specified instances of warnings in a
referenced model. By accessing the MSLDiagnostic object of the specific instance of the
warning, you can suppress the warning only when the block inside the referenced model
is simulated from the specified top model.

Derived range analysis support for System objects in Simulink
Using the Fixed-Point Tool, you can now derive ranges for models that use handle objects,
including System objects. For more information on range analysis in the Fixed-Point Tool,
see How Range Analysis Works.

Autoscaling support for Simulink.AliasType objects
Using the Fixed-Point Tool, you can now propose and apply data types for
Simulink.AliasType objects used in your model. The Fixed-Point Tool detects alias
type objects in your model and proposes a fixed-point data type based on their respective
values and ranges. The tool applies the proposed data type to the alias type object by
updating the definition of the object in the base workspace. For more information, see
Autoscale Simulink.AliasType Objects.

Improved data type proposals for shared data type groups
across model reference
In past releases, there was limited traceability of model objects which were required to
use the same data type across model reference boundaries. This often resulted in an
update diagram error after applying proposed data types.

Beginning in R2017a, when the Fixed-Point Tool proposes data types for data objects in
shared data type groups, the tool generates a proposal based on all collected ranges,
including range information from data objects used inside referenced models. The Fixed-
Point Tool can also now highlight all model elements that must use the same data type
when the shared data type group crosses model reference boundaries.

5-3

https://www.mathworks.com/help/releases/R2017a/fixedpoint/ug/how-does-range-analysis-work.html
https://www.mathworks.com/help/releases/R2017a/fixedpoint/ug/autoscale-objects.html

More fixed-size variable information in Convert to Fixed-Point
step of the Fixed-Point Converter app
In R2017a, in the Fixed—Point Converter app, after you convert floating-point MATLAB
code to fixed-point MATLAB code, the app provides fixed-point type information for
variables.

In the code pane of the Convert to Fixed-Point step, after fixed-point conversion, if you
place your cursor over a converted variable or expression, the app displays the fixed-point
type information.

For a variable with a fixed-point type in the original code, when you place your cursor
over the variable before or after conversion, the app displays the fixed-point type
information.

R2017a

5-4

fimath property changes
All fimath property names are case-sensitive and require that you use the full property
names. You cannot use truncated property names. In previous releases, when using
truncated property names, a warning would appear. Beginning in R2017a, inexact
property names result in an error.

Compatibility Considerations
To avoid seeing errors for fimath properties, update your code so it uses the full names
and correct cases of all fimath properties. The full names and correct cases of the
properties appear when you display a fimath object on the MATLAB command line.

5-5

https://www.mathworks.com/help/releases/R2017a/fixedpoint/ref/fimath.html

R2016b

Version: 5.3

New Features

Bug Fixes

6

Single-Precision Conversion: Automatically convert double-
precision systems to use single-precision data types in
Simulink
Using the Single Precision Converter, you can now automatically convert Simulink models
from double-precision to single-precision. The Converter makes these changes:

• Conversion of user-specified double-precision data types to single-precision data types
(applies to block settings, Stateflow chart settings, signal objects, and bus objects.)

• Output signals and intermediate settings using inherited data types which compile to
double-precision change to single-precision data types.

The converter does not change Boolean, built-in integer, or user-specified fixed-point data
types. When the conversion is finished, the converter displays a table summarizing the
compiled and proposed data types of the objects in the system under design. When the
conversion is finished, a table summarizes the compiled and proposed data types of the
objects in the system under design.

To use the Single-Precision Converter, from the Simulink Analysis menu, select Data
Type Design > Single Precision Converter. Under System under design, select the
system to convert to single-precision, then click Convert to Single.

For more information, see Getting Started with Single Precision Converter.

Float to Fixed Conversion of MATLAB Function Blocks:
Automatically generate fixed-point versions of floating-point
MATLAB Function blocks
When converting a model that contains MATLAB Function blocks, you can now inspect
type information of the MATLAB variables in the context of the code. This new code view
provides a similar workflow to the Fixed-Point Converter app in MATLAB. To open the
new code view, in the Fixed-Point Tool, under Automatic Data Typing, click Inspect
MATLAB Function blocks.

R2016b

6-2

https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/getting-started-with-the-double-to-single-converter.html

The window that opens helps you to inspect advanced conversion settings such as
fimath settings, and MATLAB function replacements.

6-3

Once you are satisfied with the proposed data types, click Apply to have the tool
automatically generate a variant subsystem. The variant subsystem contains the original
floating-point version of the MATLAB function block, and a fixed-point version of the
block. You can refine the conversion by modifying the original floating-point MATLAB
code. The fixed-point variant will automatically update after reconverting the block.

R2016b

6-4

Histogram Instrumentation in Simulink: Generate log2
histograms of Simulink signals and blocks from simulation
data
Using the Fixed-Point Tool, you can now view a histogram of bits used by each object in
your system under design. The bit weights are displayed along the X-axis, and the
percentage of occurrences along the Y-axis. Each bin in the histogram corresponds to a
bit in the binary word. The plot also includes the number of times that zero occurred.
After simulating a system with fixed-point instrumentation or signal logging turned on,
select an object in your model from the Contents pane of the Fixed-Point Tool and select
the Result Details tab to view the histogram plot.

6-5

R2016b

6-6

Autoscaling numerictype Objects: Propose and apply fixed-
point data types for Simulink numeric type objects
Using the Fixed-Point Tool, you can now propose and apply data types for
Simulink.NumericType and embedded.numerictype objects used in your model. The
Fixed-Point Tool detects numeric type objects in your model and proposes a fixed-point
data type based on their respective values and ranges. The tool applies the proposed data
type to the numeric type object by updating the definition of the object in the base or
model workspace. For more information on autoscaling Simulink.NumericType
objects, see Autoscale Simulink.NumericType Objects.

Range analysis support for FIR filters, Dead Zone, and Rate
Limiter blocks
Using the Fixed-Point Tool, you can now derive ranges for models that use Discrete FIR
Filter, Dead Zone, and Rate Limiter blocks. For more information on range analysis in the
Fixed-Point Tool, see How Range Analysis Works.

Simulink Diagnostic Suppressor
The Diagnostic Viewer in Simulink now includes an option to suppress certain
diagnostics. This feature enables you to suppress warnings for specific objects in your
model. Click the Suppress this warning button next to the warning in the Diagnostic
Viewer to suppress the warning from the specified source. You can restore the warning
from the source by clicking Restore this warning.

6-7

https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/autoscale-simulink-numerictype-objects.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/deadzone.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/ratelimiter.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ug/how-does-range-analysis-work.html

You can also control the suppressions from the command line. For more information, see
Suppress Diagnostic Messages Programmatically.

Reduced number of multiplication helper functions
When you generate code for your model, there are now fewer generated multiplication
helper functions. The new multiplication helper functions parameterize the shift amount
for multiplication operations using binary-point scaling, reducing the need for separate
functions in the generated code.

This change results in reduced memory consumption. This reduction in the amount of
code generated from a model aids in the maintainability of your code base.

Improved accuracy of fixed-point sin, cos, and mod functions
The fixed-point sin and cos functions are now more precise. In past releases these
calculations were accurate only to within the top 16 most-significant bits of the input.

The mod function now has improved accuracy because it no longer limits internally-
computed intermediate types to 32-bits or less.

For more information, see the sin, cos, and mod reference pages.

Improved workflow for collecting and analyzing ranges in the
Fixed-Point Converter app
The Simulate and Derive buttons on the Convert to Fixed Point page of the Fixed-Point
Converter app are now simplified and merged into a single Analyze button. This button
controls which ranges (simulation ranges, design ranges, and derived ranges) are
collected and used in the data type proposal phase of the conversion. When either the
Specify design ranges or the Analyze ranges using derived range analysis options
are selected, the Static Min and Static Max columns appear in the table. These columns
do not appear when only the Analyze ranges using simulation option is selected,
simplifying the view of the data. As in previous releases, you can still control which
ranges are used for data type proposal in the Settings pane.

R2016b

6-8

https://www.mathworks.com/help/releases/R2016b/simulink/ug/suppress-diagnostic-messages.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/sin.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/cos.html
https://www.mathworks.com/help/releases/R2016b/fixedpoint/ref/mod.html

6-9

R2016a

Version: 5.2

New Features

Bug Fixes

7

Autoscaling Parameter Objects: Automatically propose and
apply data types for parameter objects
Using the Fixed-Point Tool, you can now propose and apply data types for parameter
objects used in your model. The Fixed-Point Tool detects parameter objects in your model
and proposes a fixed-point data type based on their respective values and ranges. The tool
applies the proposed data type to the parameter object by updating the definition of the
parameter object in the base or model workspace. For more information, see Autoscale
Simulink.Parameter Objects.

View and edit fi objects in Model Explorer
You can now view and edit fi objects and their local fimath properties using Model
Explorer in Simulink. You can change the writable properties of fi objects from the
Model Explorer. You cannot change the numeric type properties of fi objects after
creation.

R2016a

7-2

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/autoscale-simulink-parameter-objects.html
https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/autoscale-simulink-parameter-objects.html

Simulate system level designs that integrate referenced
models targeting an assembly of heterogeneous embedded
devices
When modeling larger systems, models are often composed of referenced models that
target various embedded devices. You can now simulate a parent system model that
includes referenced models configured with mismatching hardware settings for different
embedded devices. In past releases, Simulink required the hardware settings on
referenced models to match to simulate the top-level model. You can configure the

7-3

hardware implementation settings in the Configuration Parameters > Hardware
Implementation pane.

Enhancements to Fixed-Point Converter app
Support for arrays of structures

You can now convert arrays of structures to fixed point using the Fixed-Point Converter
app. For more information on language features supported by the Fixed-Point Converter
app, see MATLAB Language Features Supported for Automated Fixed-Point Conversion.

Structures in generated fixed-point code

The Fixed-Point Converter now proposes a unified data type for structures that are
similar. Similar structures are structures which contain fields with the same name,
number and type. The Fixed-Point Converter app no longer generates copies of
structures, making the generated fixed-point code more efficient. See Convert Code
Containing Structures to Fixed Point.

Revert changes to input type definitions

You can now revert and restore changes to type definitions in the Define Input Types
step of the Fixed-Point Converter app. You can revert or restore changes in the entry-
point input arguments table or the global variables table.

Use the undo and redo buttons for the table that you want to change. Alternatively, use
the keyboard shortcuts for undo and redo. The keyboard shortcuts apply to the selected
table. The shortcuts are defined in your MATLAB preferences. The default keyboard
shortcuts for undo and redo on a Windows® platform are Ctrl+Z and Ctrl+Y.

View complete error message in error table

In previous releases, the Fixed-Point Converter app truncated a message that did not fit
on one line of the error messages table on the Convert to Fixed-Point step. In R2016a,
the app displays a long message on multiple lines so that you can see the entire message.

Additional keyboard shortcuts in the code generation report

You can now use keyboard shortcuts to perform the following actions in a code generation
report.

R2016a

7-4

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/matlab-language-features-supported-for-automated-fixed-point-conversion.html
https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/convert-code-containing-structures-to-fixed-point.html
https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/convert-code-containing-structures-to-fixed-point.html

Action Default Keyboard Shortcut for a
Windows platform

Zoom in Ctrl+Plus
Zoom out Ctrl+Minus
Evaluate selected MATLAB code F9
Open help for selected MATLAB code F1
Step backward through files that you
opened in the code pane

Alt+Right

Refresh F5
Find Ctrl+F

Your MATLAB preferences define the keyboard shortcuts associated with these actions.
You can also select these actions from a context menu. To open the context menu, right-
click anywhere in the report.

Changes to Fixed-Point Conversion Code Coverage

If you use the Fixed-Point Converter app to convert your MATLAB code to fixed-point code
and propose types based on simulation ranges, the app shows code coverage results. In
previous releases, the app showed the coverage as a percentage. In R2016a, the app
shows the coverage as a line execution count.

7-5

For more information, see Code Coverage.

R2016a

7-6

https://www.mathworks.com/help/releases/R2016a/fixedpoint/ug/fixed-point-conversion.html#bt1s0y3

R2015aSP1

Version: 5.0.1

Bug Fixes

8

R2015b

Version: 5.1

New Features

Bug Fixes

9

Simulink Fixed-Point Tool workflow simplification: Propose
signedness and data types for inherited and floating-point
types
System under design (SUD) specification

Upon opening the Fixed-Point Tool, you must now select the system under design for
fixed-point conversion. Once selected, the system name will appear highlighted in green
in the Model Hierarchy pane. The Fixed-Point Tool will propose and apply data types for
the selected system only.

To change the system under design, click Change. In the dialog, select the system you
want to convert.

Signedness proposals

The Fixed-Point Tool now proposes signedness for blocks in your system under design. To
get signedness proposals for blocks in your model, in the Automatic data typing pane,
select the Signedness check box.

R2015b

9-2

The Fixed-Point Tool bases its signedness proposals on collected range information and
block constraints. Signals that are always strictly positive now get an unsigned data type
proposal, gaining an additional bit of precision compared to previous releases.

By default, the Signedness check box is selected. If you clear the check box, the Fixed-
Point Tool proposes a signed data type for all results that currently specify a floating-point
or an inherited output data type unless other constraints are present. If a result specifies
a fixed-point output data type, the Fixed-Point Tool will propose a data type with the same
signedness as the currently specified data type unless other constraints are present.

Proposals for objects using inherited and floating-point types

You can now elect to receive proposals for objects in your model that use floating-point
data types or one of the inherited data types for block outputs. To get proposals for
objects using floating-point or inherited data types, in the Automatic data typing pane,
select the corresponding check boxes.

By default, the Inherited and Floating point check boxes are selected. If you clear the
Inherited or Floating point check boxes, the Fixed-Point Tool will not propose a fixed-
point data type for results that use an inherited or floating-point data type respectively.

9-3

Two-way traceability between model and Fixed-Point Tool

You can now trace between Simulink blocks in your model and their corresponding results
in the Fixed-Point Tool. This capability simplifies the task of debugging overflows and
other data type propagation issues in your model. Right-click on a block in your Simulink
model and select Fixed-Point Tool Result to highlight the result in the Contents
pane of the Fixed-Point Tool. You can also trace a result back to the model by right-
clicking a result in the Contents pane and selecting Highlight in Editor.

New configurations for model settings

Under Configure model settings in the Fixed-Point Tool, use the configurations to set
up your model for range collection.

• The Range collection using double override configuration overrides the data types
in your model to doubles and enables instrumentation of your model. Use these
settings to collect simulation ranges using ideal floating-point data types.

• The Range collection with specified data types configuration removes data type
override and enables instrumentation of your model. Use this shortcut to collect
simulation ranges using the data types specified in your model and to validate current
behavior.

• The Remove overrides and disable range collection configuration restores your
model to its specified numeric behavior and disables instrumentation to restore
maximum speed. Use this shortcut to clean up model settings after conversion.

Double-precision to single-precision conversion: Convert
double-precision MATLAB code to single-precision MATLAB
code using the command line
In R2015b, you can use the convertToSingle function to convert double-precision
MATLAB code to single-precision MATLAB code.

You can verify the behavior of a single-precision version of your code without modifying
the original algorithm. When a double precision operation cannot be removed, the report
highlights the MATLAB expression that results in that operation.

For example, to generate single-precision MATLAB code from a double-precision function
myfunction that takes two double arguments:

convertToSingle myfunction -args {1 2}

R2015b

9-4

To use verification options, create a coder.SingleConfig object that you pass to
convertToSingle. You can:

• Test numerics by running the test file with the single-precision types applied.
• Compare double-precision and single-precision test results using the Simulation Data

Inspector or your own plotting functions.

scfg = coder.config('single');
scfg.TestBenchName = 'myfunction_test';
scfg.TestNumerics = true;
scfg.LogIOForComparisonPlotting = true;
convertToSingle -config scfg myfunction -args {1 2}

If you also have a MATLAB Coder™ license, you can:

• Generate single-precision C code using the MATLAB Coder app. Use this workflow if
your goal is to generate single-precision C code in the most direct way and you do not
want to see the intermediate single-precision MATLAB code.

• Generate single-precision C code using codegen with the -singleC option. Use this
workflow when you want to generate single-precision C code in the most direct way
and you do not want to see the intermediate single-precision MATLAB code

• Generate single-precision MATLAB code using codegen with a
coder.SingleConfig object. Use this workflow if you want to see the single-
precision MATLAB code or use verification options.

• Generate single-precision C code using codegen with a coder.SingleConfig object
and a code configuration object. Use this workflow to generate single-precision C code
when you also want to see the single-precision MATLAB code or use verification
options.

For more information about single-precision conversion using MATLAB Coder, see the
MATLAB Coder release notes.

MATLAB Fixed-Point Converter app streamlined workflow:
Restore project state and minimize regeneration of MEX files
Saving and restoring fixed-point conversion workflow state in the app

If you close a project before completing the fixed-point conversion process, the app saves
your work. When you reopen the project, the app restores the state. You do not have to
repeat the fixed-point conversion steps that you completed in a previous session. For

9-5

example, suppose you close the project after data type proposal. When you reopen the
project, the app shows the results of the data type proposal and enables conversion. You
can continue where you left off.

Minimized regeneration of MEX files

The Fixed-Point Converter app now optimizes when it regenerates MEX files. The app will
only rebuild the MEX file when required by changes in your code.

Specification of additional fimath properties in app editor

You can now control all fimath properties of variables in your code from within the
Fixed-Point Converter app editor. To modify the fimath settings of a variable, select a
variable and click FIMATH in the dialog that appears. You can alter the Rounding
method, Overflow action, Product mode, and Sum mode properties. You can also modify
these properties from the settings pane. For more information on these properties, see
fimath.

Improved management of comparison plots

The Fixed-Point Converter app now docks plots generated during the testing phase of
your fixed-point code into separate tabs of one figure window. Each tabbed figure
represents one input or output variable and is labeled with the function, variable, word

R2015b

9-6

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html

length, and a timestamp. Each tab contains three sub plots. The plots use a time series
based plotting function to show the floating-point and fixed-point results and the
difference between them.

Subsequent iterations are also plotted in the same figure window.

9-7

Variable specializations

On the Convert to Fixed Point page, in the Variables table of the app, you can now
view variable specializations.

Improvements to Readability of Generated Code
Structs

• When struct copies exist in the design, a separate function is now created to perform
the copy.

• Copies of structs are now avoided when the types of all fields match, improving both
readability and efficiency of the generated code.

R2015b

9-8

fimath

• fimath settings are now specified in a separate function to improve the readability of
the generated fixed-point code.

• To avoid a mismatch of fimath settings in an expression, the generated code now
uses the removefimath function.

function [y] = my_add_fixpt(a,b)
%Adds a and b
fm = getConversionFimath();

y=fi(removefimath(a)+b, 0, 8, 0, fm);
end

function fm = getConversionFimath()
 fm = fimath('RoundingMethod', 'Floor', 'OverflowAction', 'Wrap',...
 'ProductMode', 'FullPrecision', 'MaxProductWordLength', 128,...
 'SumMode', 'FullPrecision', 'MaxSumWordLength', 128);
end

Matrices

Growth and deletion of matrices within a design are now supported for fixed-point
conversion.

function matrix_deletion_fixpt(a,i)
 fm = getConversionFimath();

 var = fi([1, 2, 3], 0, 2, 0, fm);
 coder.varsize('var');
 var(2) = []; % matrix deletion.
 var(2) = fi(2, 0, 2, 0, fm);
end

function [out] = matrix_growth_fixpt(x)
 fm = getConversionFimath();
 out = fi([], 0, 4, 0, fm);
 for ii = 1:10
 out = [out x];
 end
end

9-9

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fimath.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/removefimath.html

Tab completion for specifying files

On the Select Source Files and Define Input Types pages of the Fixed-Point Converter
app, you can now use tab completion to specify your entry-point functions and test bench
file.

Improvements for manual type definition

Improvements for manual type definition include:

• New right-click menus options to specify array size.

• Easier definition of structure types. You can:

• Use the new icon to add fields.
• See the structure type name in the table of input variables.

• Easier definition of embedded.fi types. You can:

• See the numerictype properties in the table of input variables.

• Use the new icon to change the numerictype properties.

R2015b

9-10

Compatibility between the app colors and MATLAB preferences

The app uses colors that are compatible with the Desktop tool colors preference in the
MATLAB preferences. For information about MATLAB preferences, see Preferences.

Range analysis for Delay blocks: Improve accuracy and speed
of range analysis on models using Delay blocks
Using the Fixed-Point Tool, you can now derive ranges for models that use Delay blocks
with greater precision. The Fixed-Point Tool can also derive ranges for certain
configurations of cascading Delay blocks with greater theoretical accuracy and speed. For
more information on range analysis in the Fixed-Point Tool, see How Range Analysis
Works.

Control of signed shifts in fixed-point scaling operations:
Control the use of signed shifts in generated code
You can now control the use of signed right shifts in your generated code. Some coding
standards do not allow bitwise operations on signed integers. Disabling the use of signed
shifts in generated code increases the likelihood of compliance with MISRA. When you
specify that signed right shifts should not be used in your generated code, the software
replaces signed shifts with a call to a function that performs the operation without the use
of signed shifts.

This feature requires an Embedded Coder® license.

MATLAB

To specify that MATLAB Coder not use signed right shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the
Generate arrow .

2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)

9-11

https://www.mathworks.com/help/releases/R2015b/matlab/matlab_env/preferences.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/how-does-range-analysis-work.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/how-does-range-analysis-work.html

• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Allow right shifts on signed integers

check box.
• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'.

cfg = coder.config('lib','ecoder',true); % or dll or exe
2 Set the EnableSignedRightShifts property to false.

cfg.EnableSignedRightShifts = false;

Simulink

To specify that the code generator not use signed right shifts, in the Configuration
Parameters dialog box, on the Code Generation > Code Style pane, clear Allow right
shifts on signed integers or set the parameter EnableSignedRightShifts to off.

To improve coding standard compliance for bitwise operations on signed integers, run the
following checks:

• Check for bitwise operations on signed integers - Check to identify blocks that contain
bitwise operations on signed integers.

• Check configuration parameters for MISRA C:2012 - Check that verifies that you
cleared Code Generation > Code Style > Allow right shifts on signed integers.

Access full-precision value of fi object in decimal and string
format
You can now set and get full-precision real-world values of fi objects using the new
Value property. This provides easy access to exact values in decimal format.

The tostring function now accepts fi object inputs allowing you to convert fi objects
to a string that you can copy and paste into a MATLAB script or function. The mat2str
function now also supports fi object inputs allowing you to convert fi objects to strings
without first converting to a double value.

R2015b

9-12

https://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/fi.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/tostring.html
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ref/mat2str.html

Detection of multiword operations
When an operation has an input or output larger than the largest word size of your
processor, the generated code contains multiword operations. Multiword operations can
be inefficient on hardware. In both MATLAB and Simulink, you can now detect operations
that will result in multiword code.

MATLAB

The expensive fixed-point operations check now highlights expressions in your MATLAB
code that could result in multiword operations in generated code. For more information
on enabling this check, see Find and Address Multiword Operations.

Simulink

The Identify questionable fixed-point operations check in the Model Advisor now detects
multiword operations in generated code. For more information, see Identify Questionable
Fixed-Point Operations.

Enhanced Model Advisor check for implementing strict single-
precision designs
The Model Advisor Modeling Single-Precision Systems > Identify questionable
operations for strict single-precision design check now verifies the status of
additional model settings that will help you achieve a strict single-precision design.

• The Model Advisor warns you if Configuration Parameters > Optimization >
Default for underspecified data type is set to Double.

• The Model Advisor warns you if your model uses library standard that is not optimal
for strict-single precision designs.

• The Model Advisor warns you if Configuration Parameters > Optimization >
Implement logic signals as Boolean data is not selected.

The settings suggested by the Model Advisor prevent the introduction of doubles into
your generated code, which is optimal for strict-single designs.

9-13

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/data-type-issues-in-generated-code_buhkuhq-1.html#buth98k
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html#bt225cr-1
https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/optimizing-your-generated-code-with-the-model-advisor.html#bt225cr-1

System object instrumentation in Fixed-Point Tool
The Fixed-Point Tool now collects simulation ranges and proposes data types for select
DSP System Toolbox™ System objects used inside a MATLAB Function block. You cannot
propose data types based on derived range data.

Use of these System objects requires a DSP System Toolbox license. To learn more about
using the Fixed-Point Tool to convert System objects and to learn which System objects
are supported, see Convert a System Object to Fixed Point Using the Fixed-Point Tool.

R2015b

9-14

https://www.mathworks.com/help/releases/R2015b/fixedpoint/ug/convert-a-system-object-to-fixed-point-using-the-fixed-point-tool.html

R2015a

Version: 5.0

New Features

Bug Fixes

10

Derived Ranges for MATLAB Function Blocks in Simulink
Using the Fixed-Point Tool, you can now derive ranges for variables inside a MATLAB
Function block in Simulink. The Fixed-Point Tool uses design ranges to derive ranges for
MATLAB variables in a MATLAB Function block. The tool can also propose data types for
the variables based on the derived range data. You must manually apply the proposed
data types to the variables. For more information, see Derive Ranges of MATLAB Function
Block Variables.

Fixed-Point Converter app enhancements, including detection
of dead and constant folded code, support for projects with
multiple entry point functions and support for global
variables
The following enhancements have been added to the Fixed-Point Converter app:

Support for projects with multiple entry-point functions

You can now specify multiple entry-point functions in a Fixed-Point Converter app project.
If your end goal is to generate fixed-point C/C++ library functions, conversion with
multiple entry-point functions facilitates integration with larger applications. For more
information, see Generate Fixed-Point MATLAB Code for Multiple Entry-Point Functions.

Support for global variables

You can now specify global variables in the Fixed-Point Converter app workflow and
convert algorithms which contain global variables without modifying your code. For more
information, see Convert Code Containing Global Variables to Fixed-Point.

Code coverage based translation

The Fixed-Point Converter app now detects dead and constant folded code within your
project and warns you if any parts of your code were not executed during the simulation
of your test file. This can help you verify if your test file is testing the algorithm over the
intended operating range. The app uses this code coverage information during the
translation of your code from floating-point MATLAB code to fixed-point MATLAB code.
The app inserts inline comments in the fixed-point code to mark the dead and
untranslated regions and includes the code coverage information in the generated fixed-
point conversion html report. This code coverage information is also available from the

R2015a

10-2

https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/derive-ranges-of-matlab-function-block-variables.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/derive-ranges-of-matlab-function-block-variables.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/generate-fixed-point-matlab-code-for-multiple-entry-point-functions.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-code-containing-global-variables-to-fixed-point.html

command-line workflow. For more information, see Detect Dead and Constant-Folded
Code.

Conversion from project to MATLAB scripts for command-line fixed-point
conversion

Using the -tocode option of the fixedPointConverter command, you can convert a
fixed-point conversion project to the equivalent MATLAB code in a MATLAB script. You
can use the script to repeat the project workflow in a command-line workflow. For more
information, see Convert Fixed-Point Conversion Project to MATLAB Scripts.

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses colon syntax for multi-output assignments, reducing the number of fi casts in
the generated fixed-point code.

• Preserves the indentation and formatting of your original algorithm, improving the
readability of the generated fixed-point code.

Integration with MATLAB Coder app interface

The Fixed-Point Converter app has been integrated into the new MATLAB Coder app
workflow. This integration allows for a smoother conversion process from floating-point
MATLAB code to fixed-point C/C++ code.

Automated conversion of additional DSP System objects using
the Fixed-Point Converter app
You can now convert the following DSP System Toolbox System objects to fixed-point
using the Fixed-Point Converter app:

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRFilter, direct form and direct form transposed only
• dsp.LUFactor
• dsp.VariableFractionalDelay
• dsp.Window

10-3

https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/detect-dead-and-constant-folded-code.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/detect-dead-and-constant-folded-code.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/convert-fixed-point-conversion-project-to-matlab-scripts.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firdecimator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firinterpolator-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.lufactor-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.variablefractionaldelay-class.html
https://www.mathworks.com/help/releases/R2015a/dsp/ref/dsp.window-class.html

You can propose and apply data types for these System objects based on simulation range
data. During the conversion process, you can view simulation minimum and maximum
values and proposed data types for these System objects. You can also view whole number
information and histogram data. You cannot propose data types for these System objects
based on static range data. This requires a DSP System Toolbox license.

Fixed-Point SimState logging and root logging improvements
The Simulink SimState feature allows you to save all run-time data necessary for
restoring the simulation state of the model. A SimState includes both the logged and
internal state of every block and the internal state of the Simulink engine. The Fixed-Point
Tool now supports SimState logging while fixed-point instrumentation is turned on. For
more information, see Save and Restore Simulation State as SimState.

Flexible structure assignment of buses
When a non-tunable structure is assigned to a bus signal (such as a block which uses a
structure for its initial condition parameter), the data type of the fields of the structure no
longer need to match the data type of the bus elements. The software now performs an
automatic casting of the data type of the structure field so that it matches the data type of
the bus signal. This flexible structure assignment simplifies the fixed-point conversion
workflow by automatically casting the data type of the fields of the structure when using
data type override and autoscaling your model.

eye(m,'like',a) syntax supported for fixed-point inputs
The eye function now works with fixed-point data types as well as built-in data types. The
function can now return an output whose class matches that of a specified numeric
variable or fi object. For built-in data types, the output assumes the numeric data type,
sparsity, and complexity (real or complex) of the specified numeric variable. For fi
objects, the output assumes the numerictype, complexity (real or complex), and fimath
of the specified fi object.

New interpolation method for generating lookup table
MATLAB function replacements
The coder.approximation function now offers a 'Flat' interpolation method for
generating lookup table MATLAB function replacements. This fully-specified lookup table

R2015a

10-4

https://www.mathworks.com/help/releases/R2015a/simulink/ug/saving-and-restoring-the-simulation-state-as-the-simstate.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/eye.html
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ref/coder.approximation.html

achieves high speeds by discarding the pre-lookup step and reducing the use of
multipliers in the data path. This interpolation method is available from both the
command-line workflow, and in the Function Replacements tab of the Fixed-Point
Converter app.

Fixed-point scaling information in Code Interface Report
Fixed-point scaling information is added to the code generation report in the Code
Interface Report section. Better accessibility to this information makes it easier for you to
integrate with generated code containing fixed-point data types. Each fixed-point entry in
the report table has a value in the new Scaling column giving its data type and fraction
length using Simulink fixed-point data type notation.

Access to the Code Interface Report requires an Embedded Coder license.

10-5

R2014b

Version: 4.3

New Features

Bug Fixes

Compatibility Considerations

11

Fixed-Point Converter app for automated conversion of
floating-point MATLAB code
The Fixed-Point Converter app enables you to convert floating-point MATLAB code to
fixed-point MATLAB code.

You can choose to propose data types based on simulation range data, static range data,
or both.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Test numerics by running the test file with the fixed-point types applied.
• Compare floating-point and fixed-point test results using the Simulation Data

Inspector or your own plotting functions.
• View a histogram of bits used by each variable.
• Specify replacement functions and generate approximate functions for functions in the

original MATLAB algorithm that are not supported for fixed point.

To open the app:

•
In the MATLAB Toolstrip, on the Apps tab, under Code Generation, click .

• At the MATLAB command prompt, enter fixedPointConverter.

For more information, see Fixed-Point Converter.

Commands for scripting fixed-point conversion and accessing
the collected data in Simulink
You can now use the DataTypeWorkflow.Converter class to collect simulation and
derived data, propose and apply data types to the model, and analyze results.

R2014b

11-2

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/fixedpointconverter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/datatypeworkflow.converter-class.html

This class performs the same fixed-point conversion tasks as the Fixed-Point Tool. This
facilitates scripting of the automatic conversion workflow and accessing data for analysis.
For more information, see Convert a Model to Fixed Point Using the Command-Line.

Automated fixed-point conversion for commonly used DSP
System objects, including Biquad Filter, FIR Filter, and FIR
Rate Converter
You can now convert the following DSP System Toolbox System objects to fixed point
using the Fixed-Point Converter app.

• dsp.BiquadFilter
• dsp.FIRFilter, direct form only
• dsp.FIRRateConverter
• dsp.LowerTriangularSolver
• dsp.UpperTriangularSolver
• dsp.ArrayVectorAdder

You can propose and apply data types for these System objects based on simulation range
data. During the conversion process, you can view simulation minimum and maximum
values and proposed data types for these System objects. You can also view whole number
information and histogram data. You cannot propose data types for these System objects
based on static range data. This requires a DSP System Toolbox license. For more
information, see Convert a System object to Fixed-Point Using the Fixed-Point Converter
App.

Simulation range collection and data type proposals for
MATLAB Function blocks in Simulink
The Fixed-Point Tool can now collect and display simulation ranges for variables inside a
MATLAB Function block. The tool can also propose data types for the variables based on
the simulation data. You must manually apply the proposed data types to the variables.
For more information, see Convert Model Containing MATLAB Function Block to Fixed
Point.

11-3

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-sing-the-command-line.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.biquadfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.firrateconverter-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.lowertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.uppertriangularsolver-class.html
https://www.mathworks.com/help/releases/R2014b/dsp/ref/dsp.arrayvectoradder-class.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-dsp-firfilter-object-to-fixed-point-using-the-fixed-point-converter-app.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/convert-a-model-with-a-matlab-function-block-to-fixed-point.html

Overflow diagnostics to distinguish between wrap and
saturation in Simulink
You can now separately control the diagnostics for overflows that wrap and overflows that
saturate by setting each diagnostic to error, warning, or none. These controls simplify
debugging models in which only one type overflow is of interest. For example, if you need
to detect only overflows that wrap, in the Data Validity pane of the Configuration
Parameters dialog box you can set Wrap on overflow to error or warning, and set
Saturate on overflow to none.

Highlighting of potential data type issues in generated HTML
report
You can now highlight potential data type issues in the generated HTML report. The
report highlights MATLAB code that requires single-precision, double-precision, or
expensive fixed-point operations. The expensive fixed-point operations check identifies
optimization opportunities by highlighting expressions in the MATLAB code that require
cumbersome multiplication or division, or expensive rounding.

For more information, see Find Potential Data Type Issues in Generated Code

Code generation of for loops using fixed-point loop indices
Fixed-point data types are now supported as for-loop indices in codegen. This capability
requires a MATLAB Coder license. For more information, see for.

Cast net slope computations using rational numbers
This new option improves the numerical accuracy and the readability of the C code
generated for certain fixed-point conversions having nonbinary net slopes. Normally, net
slope computation uses an integer multiplication followed by shifts. Enabling this
optimization replaces the multiply and shift operation with a multiply and divide sequence
that uses a rational number under certain simplicity and accuracy conditions.

For example, applying a net slope of 0.9, which traditionally would have generated

Vc = (int16_T)(Va * 115 >> 7);

becomes

R2014b

11-4

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/data-type-issues-in-generated-code_buhkuhq-1.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/for.html

Vc = (int16_T)(Va * 9/10);

This optimization affects both simulation and code generation. For more information, see
Handle Net Slope Computation.

Lock Column View option in the Fixed-Point Tool
This option prevents the Fixed-Point Tool from automatically changing the column view of
the contents pane. To enable this option, in the Fixed-Point Tool menu, click View > Lock
Column View. This setting is preserved across sessions.

Fixed-Point Advisor enhancements
• Improved support for interaction with Simulink data objects, including bus objects
• Block replacement recommendations for blocks with CORDIC support

hdlram renamed hdl.RAM
The hdlram System object™ has been renamed hdl.RAM. This System object no longer
requires a Fixed-Point Designer license.

Compatibility Considerations
If you open a design that uses hdlram, the software displays a warning. For continued
compatibility with future releases, replace instances of hdlram with hdl.RAM.

Changes to data type strings
Signal data type display

Signals using fixed-point data types with slope and bias scaling now always display the
slope value in the data type name. In previous releases, the display decomposed the slope
into slope adjustment factor and fixed exponent when it led to a more compact string. For
example, the data type fixdt(1,32,0.01953125,0) now gets the name
sfix32_S0p01953125. In previous releases, the name was in the decomposed format
sfix32_F1p25_en6.

11-5

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ug/optimizing-your-generated-code.html#br8zpf1-1

tostring function now uses 0 and 1 to represent signedness

The string representation of numerictype and fixdt objects returned by the tostring
function now use 0 and 1 to represent signedness rather than true and false.

T = numerictype(true,16,15);
T.tostring

ans =

numerictype(1,16,15)

When programmatically processing data types, best practice is to convert string
representations to numerictype objects. The string changes for this release do not
change the object that the strings are converted to. To convert a data type name string to
an object, pass the string as the input argument to fixdt or numerictype. For example,
fixdt('sfix32_S0p01953125') and fixdt('sfix32_F1p25_En6') return identical
numerictype objects. To convert the results of the tostring function back to an object,
use the eval function. For example, the numerictype objects returned by
eval('numerictype(1,16,15)') and eval('numerictype(true,16,15)') are
identical.

Compatibility Considerations
If your code converts data type strings to objects before doing any processing, then you
will not have any compatibility issues related to the string changes. If you depend on the
exact text returned by the tostring function or the exact text of a Simulink data type
name, then you must modify your code to account for the changes described here.
Alternatively, you can convert the string to a numerictype object before doing any
additional processing.

New featured examples
The Fixed-Point Conversion Using Fixed-Point Tool and Derived Range Analysis example
demonstrates using derived range analysis and the Fixed-Point Tool to convert a corner
detection model to fixed point.

R2014b

11-6

https://www.mathworks.com/help/releases/R2014b/fixedpoint/ref/tostring.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/eval.html
https://www.mathworks.com/help/releases/R2014b/fixedpoint/examples/fixed-point-conversion-using-fixed-point-tool-and-derived-range-analysis.html

R2014a

Version: 4.2

New Features

Bug Fixes

12

Data type override and automatic data typing for bus objects
Data type override for bus objects

You can now apply data type override to models and subsystems that use virtual and non-
virtual buses. The bus element types obey the data type override settings. This capability
allows you to:

• Obtain the idealized floating-point behavior of models that use buses.
• Obtain the ideal derived ranges for models that use buses.
• Easily compare the idealized floating-point behavior with the fixed-point behavior of

models that use buses.
• Use data type override to share fixed-point models that use buses with users who do

not have a fixed-point license.

Autoscaling for bus objects

You can autoscale models that use virtual and non-virtual buses. This capability facilitates
fixed-point conversion and optimization of models. The Fixed-Point Tool automatically
proposes fixed-point data types for bus elements which removes the need to perform
manual analysis and conversion of bus element data types.

For more information, see Refine Data Types of a Model with Buses Using Simulation
Data.

Derived ranges for complex signals in Simulink
Using the Fixed-Point Tool, you can now derive ranges for complex signals in Simulink.
For more information, see Conversion Using Range Analysis.

cordicsqrt function for fixed-point CORDIC-based square root
functionality
The cordicsqrt function provides a CORDIC-based approximation of square root for use
in fixed-point applications. For more information, see cordicsqrt and Compute Square
Root Using CORDIC.

R2014a

12-2

https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/perform-fixed-to-fixed-conversion-using-simulation-data.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/perform-fixed-to-fixed-conversion-using-simulation-data.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/conversion-using-range-analysis.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/cordicsqrt.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/compute-square-root-using-cordic-hyperbolic-kernel.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/compute-square-root-using-cordic-hyperbolic-kernel.html

Overflow detection with scaled double data types in MATLAB
Coder projects
The MATLAB Coder Fixed-Point Conversion tool now provides the capability to detect
overflows. At the numerical testing stage in the conversion process, the tool simulates the
fixed-point code using scaled doubles. It then reports which expressions in the generated
code produce values that would overflow the fixed-point data type. For more information,
see Detect Overflows Using the Fixed-Point Conversion Tool and Detecting Overflows.

You can also detect overflows when using the codegen function. For more information,
see coder.FixptConfig and Detect Overflows at the Command Line.

These capabilities require a MATLAB Coder license.

Fixed-point ARM Cortex-M code replacement support for DSP
System Toolbox FIR filters
Fixed-point ARM® Cortex®-M code replacement library support is now available for the
Discrete FIR block and the dsp.FIRFilter System object.

These capabilities require a DSP System Toolbox license.

Fixed-Point Advisor support for referenced configuration sets
The Fixed-Point Advisor now supports referenced configuration sets. For more
information, see Preparing for Data Typing and Scaling.

Enhancements to automated conversion of MATLAB code
R2014a includes the following enhancements to the fixed-point conversion capability in
MATLAB Coder projects.

These capabilities require a MATLAB Coder license.

Support for MATLAB classes

You can now use the MATLAB Coder Fixed-Point Conversion tool to convert floating-point
MATLAB code that uses MATLAB classes. For more information, see Fixed-Point Code for
MATLAB Classes.

12-3

https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-during-automated-conversion.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/fixed-point-conversion.html#bt9yuxb
https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.fixptconfig-class.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/detect-overflows-at-the-command-line.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.firfilter-class.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/prepare-for-data-typing-and-scaling.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generating-fixed-point-code-for-matlab-classes.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generating-fixed-point-code-for-matlab-classes.html

Generated fixed-point code enhancements

The generated fixed-point code now:

• Uses subscripted assignment (the colon(:) operator). This enhancement produces
concise code that is more readable.

• Has better code for constant expressions. In previous releases, multiple parts of an
expression were quantized to fixed point. The final value of the expression was less
accurate and the code was less readable. Now, constant expressions are quantized
only once at the end of the evaluation. This new behavior results in more accurate
results and more readable code.

For more informations, see Generated Fixed-Point Code.

Fixed-point report

In R2014a, when you convert floating-point MATLAB code to fixed-point C/C++ code, the
code generation software generates a fixed-point report in HTML format. For the
variables in your MATLAB code, the report provides the proposed fixed-point types and
the simulation or derived ranges used to propose those types. For a function, my_fcn,
and code generation output folder, out_folder, the location of the report is
out_folder/my_fcn/fixpt/my_fcn_fixpt_Report.html. If you do not specify
out_folder in the project settings or as an option of the codegen command, the default
output folder is codegen.

Automatic C compiler setup
In earlier releases, to set up a compiler before using fiaccel to accelerate MATLAB
algorithms, you were required to run mex -setup. Now, the code generation software
automatically locates and uses a supported installed compiler. You can use mex -setup
to change the default compiler. See Changing Default Compiler.

More flexible control of dsp.LMSFilter System object fixed-
point settings
For all dsp.LMSFilter System object fixed-point settings, you can now specify
independent fixed-point data types.

This capability requires a DSP System Toolbox license.

R2014a

12-4

https://www.mathworks.com/help/releases/R2014a/fixedpoint/ug/generated-fixed-point-code.html
https://www.mathworks.com/help/releases/R2014a/fixedpoint/ref/fiaccel.html
https://www.mathworks.com/help/releases/R2014a/matlab/matlab_external/changing-default-compiler.html
https://www.mathworks.com/help/releases/R2014a/dsp/ref/dsp.lmsfilter-class.html

Derived ranges for For Each and For Each Subsystem blocks
Range analysis supports For Each and For Each Subsystem blocks, with the following
limitations:

• When For Each Subsystem contains another For Each Subsystem, not supported.
• When For Each Subsystem contains one or more Simulink Design Verifier™ Test

Condition, Test Objective, Proof Assumption, or Proof Objective blocks, not supported.

12-5

https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreach.html
https://www.mathworks.com/help/releases/R2014a/simulink/slref/foreachsubsystem.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testcondition.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/testobjective.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofassumption.html
https://www.mathworks.com/help/releases/R2014a/sldv/ref/proofobjective.html

R2013b

Version: 4.1

New Features

Bug Fixes

Compatibility Considerations

13

C99 long long integer data type for embedded code
generation
If your target hardware and your compiler support the C99 long long integer data type,
you can use this data type for code generation. Using long long results in more efficient
generated code that contains fewer cumbersome operations. Multi-line fixed-point helper
functions can be replaced by simple expressions. This data type also provides more
accurate simulation results for fixed-point and integer simulations. If you are using
Microsoft® Windows (64-bit), using long long improves performance for many workflows
including:

• Using Accelerator mode in Simulink
• Working with Stateflow® software
• Generating C code with Simulink Coder
• Accelerating fixed-point code using fiaccel
• Generating C code and MEX functions with MATLAB Coder

For more information about enabling long long in Simulink, see the Enable long long
and Number of bits: long long configuration parameters on the Hardware
Implementation Pane.

For more information about enabling long long for MATLAB Coder, see
coder.HardwareImplementation.

Model Advisor fixed-point checks with additional coverage
and optimization awareness
The Model Advisor fixed-point checks now cover additional blocks in base Simulink and
System Toolboxes. The checks also now include the MATLAB Function block, System
objects, Stateflow, and fi objects. These improved checks consider model settings such
as hardware configuration and code generation settings. These updated checks also avoid
false negative results.

These checks require an Embedded Coder license.

For more information, see:

• Identify blocks that generate expensive rounding code

R2013b

13-2

https://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
https://www.mathworks.com/help/releases/R2013b/simulink/gui/hardware-implementation-pane.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.hardwareimplementationclass.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21

• Identify questionable fixed-point operations
• Identify blocks that generate expensive fixed-point and saturation code

fi object as an index in colon expressions and an argument to
numel and bit index functions
fi object as an index in colon expressions

You can now use fi objects in colon expressions. When you use fi in a colon expression,
all colon operands must have integer values. See the fi and colon reference pages for
examples.

fi objects as bit index input argument

The bitget, bitset, bitsliceget, bitandreduce, bitorreduce, and
bitxorreduce functions now accept fi objects as the bit index argument.

fi objects as shift-value input argument

The bitsra, bitsrl, bitsll, bitrol, and bitror functions now accept fi objects as
the shift-value input argument. You can use fi and built-in data type shift values
interchangeably in MATLAB functions. This new capability facilitates fixed-point
conversion.

numel function support for fi inputs

Effective R2013b, the numel function returns the number of elements in a fi array. Using
numel in your MATLAB code returns the same result for built-in types and fi objects.
Use numel to write data-type independent MATLAB code for array handling; you no
longer need to use the numberofelements function.

The numel function is supported for simulation and code generation and with the
MATLAB Function block in Simulink.

For more information, see numel.

Improved efficiency of data type internal rules for Lookup
Table blocks
Blocks in the Lookup Tables library have a new internal rule for fixed-point data types to
enable faster hardware instructions for intermediate calculations (with the exception of

13-3

https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fi.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/colon.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitget.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitset.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsra.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsrl.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsll.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitrol.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitror.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

the Direct Lookup Table (n-D), Prelookup and Lookup Table Dynamic blocks). To use this
new rule, select Speed for the Internal Rule Priority parameter in the dialog box. To
use the R2013a internal rule, select Precision.

Derived ranges for complex variables in MATLAB Coder
projects
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now derive
ranges for complex variables. For more information, see Propose Data Types Based on
Derived Ranges. This capability requires a MATLAB Coder license.

Simplified modeling of single-precision designs
Fixed-Point Designer now uses strict single-precision algorithms for operations between
singles and integer or fixed-point data types. Operations, such as cast, multiplication and
division, use single-precision math instead of introducing higher-precision doubles for
intermediate calculations in simulation and code generation. You no longer have to
explicitly cast integer or fixed-point inputs of these operations to single precision. To
detect the presence of double data types in your model, use the Model Advisor Identify
questionable operations for strict single-precision design check.

Compatibility Considerations
In R2013b, for both simulation and code generation, Fixed-Point Designer avoids the use
of double data types to achieve strict single design for operations between singles and
integers or fixed-point types. In previous releases, Fixed-Point Designer used double data
types in intermediate calculations for higher precision. You might see a difference in
numerical behavior of an operation between earlier releases and R2013b.

For example, when you cast from a fixed-point or integer data type to single or vice versa,
the type used for intermediate calculations can significantly affect numerical results.
Consider:

• Input type: ufix128_En127
• Input value: 1.999999999254942 — Stored integer value is (2^128 -2^100).
• Output type: single

R2013b

13-4

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1
https://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink-checks_bq6d4aa-1.html#btzpiip-1

Release Calculation performed by Fixed-Point Designer Output
Result

Design Goal

R2013b Y = single(2^-127) * single(2^128-2^100)
= single(2^-127) * Inf

Inf Strict singles

Previous
releases

Y = single(double(2^-127) * double(2^128 -
2^100))
= single(2^-127 * 3.402823656532e+38)

2 Higher-precision
intermediate
calculation

There is also a difference in the generated code. Previously, Fixed-Point Designer allowed
the use of doubles in the generated code for a mixed multiplication that used single and
integer types.

m_Y.Out1 = (real32_T)((real_T)m_U.In1*(real_T)m_U.In2);

In R2013b, it uses strict singles.

m_Y.Out1=(real32_T)m_U.In1*m_U.In2;

You can revert to the numerical behavior of previous releases, if necessary. To do so,
insert explicit casting from integer and fixed-point data types to doubles for the inputs of
these operations.

Range analysis support on Mac platforms
You can now perform derived range analysis of your model on Mac platforms. For more
information, see Conversion Using Range Analysis.

Changes to showInstrumentationResults function options
New option to suppress display of MATLAB code

When generating a printable instrumentation report, you can now choose to display only
the tables that show information about logged variables. Used with the -printable
option, the -nocode option suppresses display of the MATLAB code. Displaying only the
logged variable information is useful for large projects with many lines of code.

13-5

https://www.mathworks.com/help/releases/R2013b/fixedpoint/conversion-using-range-analysis.html

Removal of -browser option

The showInstrumentationResults function -browser option has been removed. Use
the -printable option instead. The -printable option creates a printable report and
opens it in the system browser.

For more information, see showInstrumentationResults.

Changes to Continuous state-space block family range
analysis support
The Continuous Simulink blocks State-Space, Transfer Fcn, and Zero-Pole are not
supported and not stubbable for range analysis. For more information on blocks that are
supported for range analysis, see Supported and Unsupported Simulink Blocks.

Compatibility Considerations
If you have a model that contains one or more continuous State-Space, Transfer Fcn, or
Zero-Pole blocks, your model is incompatible with range analysis. Consider analyzing
smaller portions of your model to work around this incompatibility.

Enhanced fiaccel support for int64 and uint64 functions
The fiaccel function now supports int64 and uint64 with fi inputs.

Support for LCC compiler on Microsoft Windows (64-bit)
machines
If you are using Microsoft Windows (64-bit), LCC-64 is now available as the default
compiler. You no longer have to install a separate compiler to perform fixed-point
acceleration using fiaccel.

Warning for use of inexact fi and fimath property names
All fi and fimath property names are case sensitive and require that you use the full
property names. Effective R2013b, if you use inexact property names, Fixed-Point
Designer generates a warning.

R2013b

13-6

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/showinstrumentationresults.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/simulink-block-support.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/int64.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/uint64.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/fiaccel.html

Compatibility Considerations
To avoid seeing warnings for fi and fimath properties, update your code so that it uses
the full names and correct cases of all these properties. The full names and correct cases
of the properties appear when you display a fi or fimath object on the MATLAB
command line.

Conversion of numeric variables into Simulink.Parameter
objects
You can now convert a numeric variable into a Simulink.Parameter object using a
single step.
% Define numerical variable in base workspace
myVar = 5;
%
% Create data object and assign variable value to data object value
myObject = Simulink.Parameter(myVar);

Previously, you did this conversion using two steps.

% Define numerical variable in base workspace
myVar = 5;
%
% Create data object
myObject = Simulink.Parameter;
%
% Assign variable value to data object value
myObject.Value = myVar;

Fixed-point conversion test file coverage results
The MATLAB Coder Fixed-Point Conversion tool now provides test file coverage results.
After simulating your design using a test file, the tool provides an indication of how often
the code is executed. If you run multiple test files at once, the tool provides the
cumulative coverage. This information helps you determine the completeness of your test
files and verify that they are exercising the full operating range of your algorithm. The
completeness of the test file directly affects the quality of the proposed fixed-point types.

This capability requires a MATLAB Coder license.

For more information, see Code Coverage.

13-7

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ug/test-file-coverage.html

Fixed-point conversion workflow supports designs that use
enumerated types
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can now propose
data types for enumerated data types using derived and simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Derived Ranges and
Propose Fixed-Point Data Types Based on Simulation Ranges. This capability requires a
MATLAB Coder license.

Fixed-point conversion of variable-size data using simulation
ranges
Using the Fixed-Point Conversion tool in MATLAB Coder projects, you can propose data
types for variable-size data using simulation ranges.

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges.
This capability requires a MATLAB Coder license.

Error checking improvements for bitconcat, bitandreduce,
bitorreduce, bitxorreduce, bitsliceget functions
The bitconcat, bitandreduce, bitorreduce, bitxorreduce, and bitsliceget
functions now check that all input arguments are real. If any inputs are complex, these
functions generate an error.

The bitconcat function now generates an error in the unary syntax case,
bitconcat(a), if the input argument a is a scalar or is empty. To use bitconcat with
one input argument, the argument must have more than one array element available for
bit concatenation (that is, length(a)>1).

Legacy data type specification functions return numeric
objects
In previous releases, the following functions returned a MATLAB structure describing a
fixed-point data type:

• float

R2013b

13-8

https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/coder/ug/propose-data-types-based-on-simulation-and-derived-ranges.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitconcat.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitandreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitxorreduce.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/bitsliceget.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/float.html

• sfix
• sfrac
• sint
• ufix
• ufrac
• uint

Effective R2013b, they return a Simulink.NumericType object. If you have existing models
that use these functions as parameters to dialog boxes, the models continue to run as
before and there is no need to change any model settings.

These functions do not offer full Data Type Assistant support. To benefit from this
support, use fixdt instead.

Function Return Value in
Previous Releases
— MATLAB
structure

Return Value Effective R2013b — NumericType

float('double') Class: 'DOUBLE' DataTypeMode: 'Double'
float('single') Class: 'SINGLE' DataTypeMode: 'Single'
sfix(16) Class: 'FIX'

 IsSigned: 1
 MantBits: 16

DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Signed'
 WordLength: 16

ufix(7) Class: 'FIX'
 IsSigned: 0
 MantBits: 7

DataTypeMode: 'Fixed-point: unspecified scaling'
 Signedness: 'Unsigned'
 WordLength: 7

sfrac(33,5) Class: 'FRAC'
 IsSigned: 1
 MantBits: 33
 GuardBits: 5

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 33
 FractionLength: 27

ufrac(44) Class: 'FRAC'
 IsSigned: 0
 MantBits: 44
 GuardBits: 0

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 44
 FractionLength: 44

sint(55) Class: 'INT'
 IsSigned: 1
 MantBits: 55

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 55
 FractionLength: 0

13-9

https://www.mathworks.com/help/releases/R2013b/simulink/slref/sfix.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/sfrac.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/sint.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/ufix.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/ufrac.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/uint.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/simulink.numerictype.html
https://www.mathworks.com/help/releases/R2013b/simulink/slref/fixdt.html

Function Return Value in
Previous Releases
— MATLAB
structure

Return Value Effective R2013b — NumericType

uint(77) Class: 'INT'
 IsSigned: 0
 MantBits: 77

DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Unsigned'
 WordLength: 77
 FractionLength: 0

Compatibility Considerations
MATLAB Code

MATLAB code that depends on the return arguments of these functions being a structure
with fields named Class, MantBits or GuardBits no longer works correctly. Change
the code to access the appropriate properties of a NumericType object, for example,
DataTypeMode, Signedness, WordLength, FractionLength, Slope and Bias.

C Code

Update C code that expects the data type of parameters to be a legacy structure to handle
NumericType objects instead. For example, if you have S-functions that take legacy
structures as parameters, update these S-functions to accept NumericType objects.

MAT-files

Effective R2013b, if you open a Simulink model that uses a MAT-file that contains a data
type specification created using the legacy functions, the model uses the same data types
and behaves in the same way as in previous releases but Simulink generates a warning.
To eliminate the warning, recreate the data type specifications using NumericType
objects and save the MAT-file.

You can use the fixdtupdate function to update a data type specified using the legacy
structure to use a NumericType. For example, if you saved a data type specification in a
MAT-file as follows in a previous release:

oldDataType = sfrac(16);
save myDataTypeSpecification oldDataType

use fixdtUpdate to recreate the data type specification to use NumericType:

R2013b

13-10

load DataTypeSpecification
fixdtUpdate(oldDataType)

ans =

 NumericType with properties:

 DataTypeMode: 'Fixed-point: binary point scaling'
 Signedness: 'Signed'
 WordLength: 16
 FractionLength: 15
 IsAlias: 0
 DataScope: 'Auto'
 HeaderFile: ''
 Description: ''

For more information, at the MATLAB command line, enter:

fixdtUpdate

numberofelements function being removed in a future release
The numberofelements function will be removed in a future release of Fixed-Point
Designer software. Use numel instead.

13-11

https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numberofelements.html
https://www.mathworks.com/help/releases/R2013b/fixedpoint/ref/numel.html

R2013a

Version: 4.0

New Features

Bug Fixes

Compatibility Considerations

14

Product restructuring
The Fixed-Point Designer product replaces two pre-existing products: Fixed-Point
Toolbox™ and Simulink Fixed Point™ . You can access archived documentation for both
products on the MathWorks® Web site.

Histogram logging in instrumented MATLAB Code Generation
report
The buildInstrumentedMex and showInstrumentationResults instrumentation
functions now can generate log2 histograms. A histogram is generated for each named
and intermediate variable and for each expression in your code. The code generation
report Variables tab includes a link to the histogram for each variable. You can use this
histogram to determine the word and fraction lengths for your fixed-point values. Refer to
the buildInstrumentedMex and showInstrumentationResults reference pages for
information.

fi object in indexing and switch-case expressions
Effective this release, you can use fi objects as indices to arrays of built-in types and fi
types. You can also use fi objects in switch-case expressions. These changes let you use
fi objects without having to convert them. See the fi reference page for examples.

zeros, ones, and cast code reuse for floating-point and fixed-
point types
The zeros, ones, and cast functions now work with fixed-point data types as well as
built-in data types. The functions can now return an output whose class matches that of a
specified numeric variable or fi object. For built-in data types, the output assumes the
numeric data type, sparsity, and complexity (real or complex) of the specified numeric
variable. For fi objects, the output assumes the numerictype, complexity (real or
complex), and fimath of the specified fi object.

For example:

>> a = fi([],1,24,12);
>> c = cast(pi,'like',a)

c =

R2013a

14-2

https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fi.html

 3.1416

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

>> z = zeros(2,3,'like',a)

z =

 0 0 0
 0 0 0

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

>> o = ones(2,3,'like',a)

o =

 1 1 1
 1 1 1

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Signed
 WordLength: 24
 FractionLength: 12

This capability allows you to cleanly separate algorithm code in MATLAB from data type
specifications. Using separate data type specifications enables you to:

• Reuse your algorithm code with different data types.
• Switch easily between fixed-point and floating-point data types to compare fixed-point

behavior to a floating-point baseline.
• Try different fixed-point data types to determine their effect on the behavior of your

algorithm.
• Write clean, readable code.

14-3

For more information, see Implement FIR Filter Algorithm for Floating-Point and Fixed-
Point Types using cast and zeros.

Code generation for x.^n when n is a variable and x is a fi
object
If the output type can be derived from the input settings, the mpower and power
functions no longer require a constant exponent input. For more information, see mpower
and power.

Fixed-Point Advisor support for model reference
The Fixed-Point Advisor now performs checks on referenced models. It checks the entire
model reference hierarchy against fixed-point guidelines. The Advisor also provides
guidance about model configuration settings and unsupported blocks to help you prepare
your model for conversion to fixed point.

Automated conversion of floating-point to fixed-point types in
MATLAB Coder projects
You can now convert floating-point MATLAB code to fixed-point C code using the fixed-
point conversion capability in MATLAB Coder projects. You can choose to propose data
types based on simulation range data, static range data, or both.

Note You must have a MATLAB Coder license.

During fixed-point conversion, you can:

• Propose fraction lengths based on default word lengths.
• Propose word lengths based on default fraction lengths.
• Optimize whole numbers.
• Specify safety margins for simulation min/max data.
• Validate that you can build your project with the proposed data types.
• Test numerics by running the test file with the fixed-point types applied.
• View a histogram of bits used by each variable.

R2013a

14-4

https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/convert-fir-filter-to-fixed-point-with-types-separate-from-code.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/mpower.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/power.html

For more information, see Propose Fixed-Point Data Types Based on Simulation Ranges
and Propose Fixed-Point Data Types Based on Derived Ranges.

Improved autoscaling for models with virtual bus signals
Autoscaling with the Fixed-Point Tool now handles data type constraints for virtual buses
that do not have any associated bus objects. The data type proposals take into account the
constraints introduced by these bus signals.

This improved autoscaling reduces data type mismatch errors. It also enables the Fixed-
Point Tool to provide additional diagnostic information when you accept autoscaling
proposals. For more information, see Shared Data Type Summary.

Data Type Override for MATLAB Function block using built-in
doubles and singles
The data type override rules for MATLAB Function block input signals and parameters
have changed. If the input signals and parameters are double or single, and you
specify data type override to be Double or Single, the overridden data types are now
built-in double or built-in single, not fi double and fi single as in previous
releases. If the input signals and parameters are fi objects or fixed-point signals, and you
specify data type override to be Double or Single, the overridden data types are fi
double and fi single as in previous releases. For more information, see MATLAB
Function Block with Data Type Override.

Compatibility Considerations
If you have MATLAB Function block code from previous releases that contains special
cases for fi double or fi single, and you specify data type override to be Double or
Single, you might have to update this code to handle built-in double and single.

Instrumentation for arrays of structs
The buildInstrumentedMex and showInstrumentationResults instrumentation
functions now show instrumentation results for arrays of structs. Each field of each struct
is logged and appears in the code generation report on the Variables tab.

14-5

https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-simulation-ranges.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/propose-data-types-based-on-derived-ranges.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/working-with-the-fixed-point-tool.html#br18ikk-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/matlab-function-block.html#bsyjhnu-3
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/buildinstrumentedmex.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/showinstrumentationresults.html

File I/O function support
The following file I/O functions are now supported for code acceleration and generation:

• fclose
• fopen
• fprintf

To view implementation details, see Functions Supported for Code Acceleration or
Generation.

Support for nonpersistent handle objects
You can now accelerate code using fiaccel for local variables that contain references to
handle objects or System objects. In previous releases, accelerating code for these objects
was limited to objects assigned to persistent variables.

Load from MAT-files for code acceleration
fiaccel now supports a subset of the load function for loading run-time values from a
MAT-file. It also provides a new function, coder.load, for loading compile-time
constants. This support facilitates code generation from MATLAB code that uses load to
load constants into a function. You no longer have to manually type in constants that were
stored in a MAT-file.

To view implementation details for the load function, see Functions Supported for Code
Acceleration or Generation.

New toolbox functions supported for code acceleration and
generation
To view implementation details, see Functions Supported for Code Acceleration or
Generation.

Bitwise Operation Functions

• flintmax

R2013a

14-6

https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/coder.load.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ug/functions-supported-for-code-acceleration-and-code-generation-from-matlab.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/flintmax.html

Computer Vision System Toolbox Classes and Functions

• binaryFeatures
• insertMarker
• insertShape

Data File and Management Functions

• computer
• fclose
• fopen
• fprintf
• load

Image Processing Toolbox Functions

• conndef
• imcomplement
• imfill
• imhmax
• imhmin
• imreconstruct
• imregionalmax
• imregionalmin
• iptcheckconn
• padarray

Interpolation and Computational Geometry

• interp2

MATLAB Desktop Environment Functions

• ismac
• ispc
• isunix

14-7

https://www.mathworks.com/help/releases/R2013a/vision/ref/binaryfeaturesclass.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertmarker.html
https://www.mathworks.com/help/releases/R2013a/vision/ref/insertshape.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/computer.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fclose.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fopen.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/fprintf.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/load.html
https://www.mathworks.com/help/releases/R2013a/images/ref/conndef.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imcomplement.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imfill.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imhmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imreconstruct.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmax.html
https://www.mathworks.com/help/releases/R2013a/images/ref/imregionalmin.html
https://www.mathworks.com/help/releases/R2013a/images/ref/iptcheckconn.html
https://www.mathworks.com/help/releases/R2013a/images/ref/padarray.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/interp2.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ismac.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/ispc.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/isunix.html

String Functions

• strfind
• strrep

Function to be removed in a future release
The saveglobalfimathpref will be removed in a future release.

Compatibility Considerations
Do not save globalfimath as a MATLAB preference. If you have previously saved
globalfimath as a MATLAB preference, use removeglobalfimathpref to remove it.

Function being removed
The emlmex function has been removed.

Compatibility Considerations
The emlmex function generates an error in R2013a. Use fiaccel instead.

R2013a

14-8

https://www.mathworks.com/help/releases/R2013a/matlab/ref/strfind.html
https://www.mathworks.com/help/releases/R2013a/matlab/ref/strrep.html
https://www.mathworks.com/help/releases/R2013a/fixedpoint/ref/fiaccel.html

